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Figure 2. Probable coordination geometry for tris(polyhydroxy) complexes 
of manganese(IV). 

six-line hyperfine patterns clearly are indicative of mangan-
ese(IV) rather than manganese(II) (Figures Id and Ie). 

Addition of excess hydrogen peroxide also eliminates the 
EPR signal in methanol or dimethyl sulfoxide solution, and 
results in the evolution of dioxygen and a reduction to man-
ganese(III) (eq 2). 

The concentration of S - \ EPR absorbing species has been 
estimated for the complex in dimethyl sulfoxide by use of the 
double integration method27^30 (1 mM copper(II) in aqueous 
10 mM EDTA was used as the integration standard). The 
concentration of manganese(IV) (S = %) is ~85 ± 10% of the 
total manganese present. 

The data are consistent with the formulation of the complex 
as (Me4N)2Mn(C6H]206)3, a monomeric high-spin complex 
of manganese(IV) that exhibits an axial distortion from oc­
tahedral symmetry. This is in accord with an earlier CD study 
of similar complexes.1 The large value for D, (1.3 ±0.3) cm-1, 
the parameter that indicates the magnitude of the axially 
symmetric crystalline field, is similar to that shown by several 
chromium(III) tris(chelates)25 and may also be assigned to 
the presence of a large dipole moment in the manganese-sor-
bitol bonds (Figure 2). The spectra of Figure 1 are in marked 
contrast to the single isotropic line centered around g = 2 that 
is observed for powdered K^Mn1 VC1<; at 77 K, which is known12 

to have pure octahedral symmetry. The sorbitol is believed to 
chelate by its m-alkoxo groups, as shown in Figure 2. 

This manganese(IV) complex appears to act as a specific 
oxygenation (oxidation) catalyst in alkali-oxygen wood 
pulping.31 Preliminary results indicate that it is capable of 
catalyzing both ring degradation and oxidative coupling pro­
cesses in alkaline solutions of several lignin model sub­
strates. 
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Water-Soluble Complexes of Tertiary Phosphines 
and Rhodium(I) as Homogeneous Catalysts1 

Sir: 

The low solubility of common phosphine-transition metal 
complexes in water has inhibited their application to catalytic 
transformations in aqueous solutions. Recent experiments have 
established that complexes derived from Pr^P(W-C6H4-
SC^Na)2 are catalytically active in homogeneous olefin hy-
drogenation and hydroformylation reactions in water.35 

Complexes derived from bidentate ligands can have useful 
differences in chemical stability and catalytic activity from 
analogous complexes containing only monodentate ligands.6 

Here we report the development of coupling reactions which 
permit the facile conversion of (bis(2-diphenylphosphinoeth-
yl)amine (I)7,8 to a wide variety of water-soluble diphosphines 
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Table I. Homogeneous Hydrogenation Reactions in Water (TN = Turnover Number, h ' )" 

TN 
substrate product* 

( C H 3 C H = C H N H C O N H 2 ) 

FMNH 2 * 
CH 3 CHOHCO 2 H 
(CH 3CH 2CHO) 

catalyst 

3-Rh(I) 

5-Rh(I) 
8-Rh(I) 
10-Rh(I) 
H-Rh(I)' ' 
(PhP)3RhCP 
4(H+)2-Rh(iy 
3-Rh(I) 

initial, h ' c 

>200 
>30 
>12 
13 
13 
48 
144/ 
130? 
6.2 
7.0 
1.6 
5.0 
14 
19 
4.4 
2.0 
1.5 
23 
130 
25 
no reaction 
no reaction 
no reaction 
no reaction 
no reaction 

totald 

4070 (20) ' 
600 (20) ' 
1000(86) ' 
560(110) 
540(88) 
970 (20) 
259(18) 
570(4.5) 
300 (66) 
410(90) 
32 (20) 
300 (70) 
600(85) ' 
330(18) 
84(19) 
40 (20) 
27(18) 
140(6) 
800(6) 
445(18) 

CH2=C(NHAc)CO2H 
(Z)-PhCH=C(NHAc)CO2H 
CH2=CHCONH2 

( E ) - C H 3 C H = C H C O J H 
(EM(OH)C6H4CH=CHCO2H 
(E)-HO2CCH=CHCO2H 

[CH2=CHCH2NCOCHOHi2 
C H 2 = C H C H 2 N H C O N H 2 

CH=CH(CH2)3CH2 
FMN* 
CH3COCO2H 
CH2=CHCH2OH 

oxidized lipoic acid 
(HOCH2CH2S)2 
C H 2 = C H C H 2 N H C S N H 2 

bicyclo[2.2.1]hept-2-ene-5,6-dicarboxylic acid 
iron(III) 

" Unless otherwise indicated, hydrogenations were carried out in 0.1 M phosphate buffer, pH 7.0, T = 25 0C, .P(H2) = 32 psi. * The product 
is that derived by reduction of the C=C group unless indicated otherwise. Products derived from isomerization of the olefinic linkage are indicated 
in parentheses. c The initial turnover number ((moles of substrate transformed) (mol of Rh) -1 h -1) was calculated from data obtained over 
the first 20 h of reaction. d The total turnover is the number of moles of substrate transformed per mole of Rh in the indicated time. ' These 
values represent minimum rates; the samples used were completely hydrogenated in the interval indicated. fT = 60 0C, E(H2) = 32 
psi. * T = 25 0C, E(H2) = 120 psi. * FMN = flavin mononucleotide; FMNH2 = dihydroflavin mononucleotide. '' H-Rh is [CH3O-
(CH2CH2O)^i5-CH2CH2PPh2J2Rh. This ligand was prepared by treating CH3O(CH2CH2O)^i6-H with thionyl chloride, followed by 
reaction of the resulting chloride with potassium diphenylphosphine; cf. D. Feitler, Ph.D. Thesis, MIT. 1977. J In acetone solution. 

Scheme I. Synthesis of Water-Soluble Diphosphines 
(Tau = Sodium Taurinate, NH2CH2CH2SO3

-Na+)10 

:ttr^c 

--Ocr< 
COiCHOHi4Cn^ 

S 173%) 

(Scheme I), and a survey of the catalytic activity of rhodium 
complexes of several of these new ligands. 

Trimellitic anhydride acid chloride, o-sulfobenzoic anhy­
dride, and ethyl oxalyl chloride are commercially available; 
tricarballylic a,/3-anhydride acid chloride was prepared by 
standard procedures.9 The conditions used for the coupling 
reactions were unexceptional. Although the product diphos­
phines were difficult to purify to homogeneity, 1H and 31P 
NIVIR spectroscopy, IR spectroscopy, and solubility provided 
good evidence for the assigned structures. The corresponding 
rhodium complexes X-Rh(I)NBD+Tf- (NBD = norborna-
diene, Tf - = triflate) were prepared in situ and used without 

characterization.10 '" Both the phosphines and the derived 
rhodium complexes appeared to form homogeneous solutions 
in water, although certain of these solutions may contain mi­
celles, especially at high concentrations. Complex 7 appeared 
to be the most soluble, with a concentration in saturated 
aqueous solution of ~0.3 M (pH 7.0, 25 0 C). 

A representative hydrogenation was conducted as follows. 
Into a 5-mL round-bottomed flask equipped with a Teflon-
coated stirring bar was weighed 3.6 mg (8.0 /xmol) of 
[Rh(NBD)Cl]2 and 4.0 mg (16 juinol) of AgTf. The flask was 
capped with a rubber septum and flushed thoroughly with 
argon. Dioxane (0.5 mL, distilled from NaBH4 under argon) 
was added by syringe. The mixture was stirred for 5 min and 
the resulting yellow-orange solution decanted from the AgCl 
precipitate by cannula into a solution of 13.8 mg (17.5 /^mol) 
of 3 in 1.0 mL of aqueous dioxane (1:1). The solution was 
stirred for an additional 15 min and transferred by cannula into 
an argon-flushed pressure reaction bottle (Lab Glass) con­
taining 8.40 g (65.1 mmol) of a-acetamidoacrylic acid sus­
pended in 200 mL of 0.1 M aqueous phosphate buffer (initial 
pH 7.60 before the addition of the substrate).13 The system was 
purged with hydrogen for 5 min, the hydrogen pressure ad­
justed to 32 psi, and the reaction mixture stirred at ambient 
temperature. Aliquots removed from the reaction bottle by 
cannula under a positive hydrogen pressure were analyzed by 
a combination of GLC and NMR spectroscopy. 

Table I summarizes the activity of these complexes in the 
hydrogenation of representative substrates: Most data were 
obtained using 3-Rh(I)NBD+Tf -, since it was easy to prepare 
and manipulate. The order of reactivity of olefinic substrate 
in hydrogenation is similar to that observed in organic solvents. 
The catalysts are poisoned by sulfur-containing compounds. 
Comparison of the activity toward allyl alcohol of 3-Rh(I) in 
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water with that of the structurally similar 4(H+H-Rh(I)'4 in 
acetone suggests little or no rate supression due to water.15 

Catalyst 4(H+H-Rh(I) is less active than Wilkinson's catalyst 
by approximately a factor of 5-10 in acetone solution. 

Water-soluble diphosphine-rhodium complexes show cat­
alytic activity in potentially useful types of reactions other than 
homogeneous hydrogenation. For example, 4-Rh(CO)Cl'6 in 
the presence of fourfold excess of 4 catalyzes the shift reaction 
(eq 1; TN = 32 h"'), '7 while 3-Rh(I)NBD+Tf- in the presence 
of 1 equiv of added 3 catalyzes exchange between water and 
dihydrogen (eq 2, TN = 8 h"' (0.1 M NaOAc); TN = 10 h~' 
(0.1 M HOAc)). A similar catalysis of eq 2 was found using 
7-Rh(I) in the presence of a twofold excess of 7 (TN = 5 

4 - Rh( I ) 
CO+ H2O • H2 + CO2 (1) 

pH 13.8, 85 0 C. P(CO) = 58 psi 

H2 + D 2 O - ^HDO + ( H D + D2) (2) 
3, 25 0C 

These results establish a practical strategy for the synthesis 
of water-soluble chelating diphosphine complexes of transition 
metals, and illustrate that the catalytic activity of these com­
plexes in water need not be intrinsically small, nor their sta­
bility inherently low. Using these catalysts, it may be possible 
to effect types of transformations which cannot be easily ac­
complished using conventional catalysts: the homogeneous 
reduction of biological substrates by dihydrogen represented 
by FMN —• FMNH2 represents one such example. We will 
describe further applications of water-soluble phosphine-metal 
complexes in catalysis in subsequent publications. 
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Intramolecular Ion Solvation Effects on Gas-Phase 
Acidities and Basicities. A New Stereochemical Probe in 
Mass Spectrometry 

Sir: 

Mass spectrometric differentiation of stereoisomeric cyclic 
diols and related compounds based on the fragmentation be­
havior in chemical ionization (CI) spectra is well known.1 ° 
These spectra, however, imply a second stereochemical ap­
proach. 

The proton transfer processes in positive and negative CI 
(P CI, N CI) spectra6'8 are outlined below (eq 1 and 2) for 
substrate molecules, M, and reactant Bronsted acids, AH+, 
and bases, B - . These reaction sequences depend on the proton 
affinities (PA) of the species involved. More exothermic proton 
transfer conditions are in favor of spectra with abundant parent 
ions, MH+ or (M — H ) - ions, and fragment ions, whereas 
near-thermoneutral or endothermic energetics give spectra 
with prominent peaks for proton bound attachment ions, 
MAH+and MB". 

M + A H + ^ M---H+---A ^ M H + + A (1) 

M + B" ^ (M - H)-- • -H+- • -B- ̂  (M - H)- + HB 
(2) 

For cyclic diols, in the first type of spectra, stereochemical 
control of the fragmentations is observed. The m-MH + al-
koxonium ions and cis-(M — H)- alkoxide ions are stabilized 
by intramolecular hydrogen bridging, as depicted for 1,3-
cyclohexanediol (1) ion species; the trans isomers are generally 
incapable of internal H bonding and, thus, give abundant 

+ 

HO-H—OH 

cis-lH* H-T^-—-y~^H 

0—H •• 0 -

cis-(l - H)- H-y^^T^H 

fragment ions.2-3'5 In the second type of spectra the MH+ / 
MAH+ and (M — H)-/MB~ ion intensity ratios according 
to reactions 1 and 2 are diagnostic terms. Field9 has reported 
structural effects on MH+ZMC4H9

+ ion intensity ratios for 
monoalcohols, in the first instance. In CI(NH3) spectra 
selective protonation of conjugated ketones has been ob­
served.10 Furthermore, it has been shown that the gas-phase 
PA of diamines can be about 80 kJ/mol higher than normal 
due to internal H bonds.'' In CI spectra of open-chain diols 
and related compounds, intramolecular H bonding apparently 
leads to a similar PA shift, which causes a higher MH+ / 
MNH4

+ ratio than for the monofunctional species.12 Evidence 
has been presented for H-bridging effects on the MH+ / 
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